The Solution by Iteration of Nonlinear Functional Equations in Banach Spaces

نویسنده

  • W. V. PETRYSHYN
چکیده

In a preceding note on the linear case [8], we established the following facts for linear T: (a) If X is reflexive and T is asymptotically bounded (i.e. || T\\ ^ M for some constant M and all nèzl), then the Equation (1) has a solution u for a given ƒ if and only if for any specific #o> the sequence of Picard iterates {xn} starting with x0 is bounded in X (see [2]). (b) For a general Banach space X, if T is asymptotically convergent (i.e. Tx converges strongly in X for each x in X as n—> + oo), the sequence of Picard iterates {xn} for a given x0 converges if and only if the equation (1) has a solution. (c) For a general Banach space X and T asymptotically convergent, if an infinite subsequence of the sequence {xn} converges, then the whole sequence converges to a solution of Equation (1). Our object in the present note is to give some partial extensions of these results to a general class of nonlinear operators T, and to indicate some interesting examples of the application of these nonlinear results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving infinite system of nonlinear integral equations by using ‎F-‎generalized Meir-Keeler condensing operators, measure of noncompactness and modified homotopy perturbation.

In this article to prove existence of solution of infinite system of nonlinear integral equations, we consider the space of solution containing all convergence sequences with a finite limit, as with a suitable norm is a Banach space. By creating a generalization of Meir-Keeler condensing operators which is named as F-generalized Meir-Keeler condensing operators and measure of noncompactness, we...

متن کامل

New hybrid method for equilibrium problems and relatively nonexpansive mappings in Banach spaces

In this paper, applying hybrid projection method, a new modified Ishikawa iteration scheme is presented for finding a common element of the solution set of an equilibrium problem and the set of fixed points of relatively nonexpansive mappings in Banach spaces. A numerical example is given and the numerical behaviour of the sequences generated by this algorithm is compared with several existence...

متن کامل

Some generalizations of Darbo's theorem for solving a systems of functional-integral equations via measure of noncompactness

In this paper, using the concept of measure of noncompactness, which is a very useful and powerful tools in nonlinear functional analysis, metric fixed point theory and integral equations, we introduce a new contraction on a Banach space. For this purpose by using of a measure of noncompactness on a finite product space, we obtain some generalizations of Darbo’s fixed-point theorem. Then, with ...

متن کامل

Solvability of infinite system of nonlinear singular integral equations in the C(Itimes‎ I‎, ‎c) space and modified semi-analytic method to find a closed-form of solution

‎In this article‎, ‎we discuss about solvability of infinite systems of singular integral equations with two variables in the Banach sequence space $C(I times I‎, ‎c)$ by applying measure of noncompactness‎ and Meir-Keeler condensing operators‎. By presenting an example, we have illustrated our results‎. ‎For validity of the results we introduce a modified semi-analytic method in the case of tw...

متن کامل

On Approximate Solutions of the Generalized Radical Cubic Functional Equation in Quasi-$beta$-Banach Spaces

In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the generalized radical cubic functional equation[    fleft( sqrt[3]{ax^3 + by^3}right)=af(x) + bf(y),]    where $a,b in mathbb{R}_+$ are fixed positive real numbers, by using direct method in quasi-$beta$-Banach spaces. Moreover, we use subadditive functions to investigate stability of the generaliz...

متن کامل

A Hyers-Ulam-Rassias stability result for functional equations in Intuitionistic Fuzzy Banach spaces

Hyers-Ulam-Rassias stability have been studied in the contexts of several areas of mathematics. The concept of fuzziness and its extensions have been introduced to almost all branches of mathematics in recent times.Here we define the cubic functional equation in 2-variables and establish that Hyers-Ulam-Rassias stability holds for such equations in intuitionistic fuzzy Banach spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007